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Abstract

Local performance optimization for joint limit avoidance and manipula-

bility maximization (singularity avoidance) is obtained by using the Jacobian

matrix pseudoinverse and by projecting the gradient of an objective function

into the Jacobian null space. Real-time redundancy optimization control is

achieved for an eight-joint redundant manipulator having a three-axis spher-

ical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic

solutions are used for both full-Jacobian and wrist-partitioned pseudo-

inverses, partitioned null-space projection matrices, and all objective func-

tion gradients. A kinematic limitation of this class of manipulators and the

limitation's e�ect on redundancy resolution are discussed. Results obtained

with graphical simulation are presented to demonstrate the e�ectiveness of

local redundant manipulator performance optimization. Actual hardware ex-

periments performed to verify the simulated results are also discussed. A

major result is that the partitioned solution is desirable because of low com-

putation requirements. The partitioned solution is suboptimal compared with

the full solution because translational and rotational terms are optimized

separately; however, the results show that the di�erence is not signi�cant.
Singularity analysis reveals that no algorithmic singularities exist for the par-

titioned solution. The partitioned and full solutions share the same physical

manipulator singular conditions. When compared with the full solution, the

partitioned solution is shown to be ill-conditioned in smaller neighborhoods

of the shared singularities.

1. Introduction

Kinematically redundant manipulators, those
with more degrees of freedom than task constraints,
can have a secondary task of performance optimiza-
tion in addition to the primary task of providing
a Cartesian trajectory. Whitney (ref. 1) derived
the pseudoinverse solution for the primary task in
the framework of the resolved motion rate algo-
rithm. Liegeois (ref. 2) suggested the local redun-
dancy resolution method that is now commonly used.
This method uses the Moore-Penrose pseudoinverse
(ref. 3) to solve the primary task and projects the
gradient of an objective function into the null space
of the Jacobian matrix to solve the secondary task. A
good review of pseudoinverse-based local redundancy
resolution is given in references 4 and 5.

Many authors who claim that the Liegeois method
is too slow for real-time application to three-
dimensional redundant manipulators have developed
alternate methods that focus on reducing the compu-
tational requirements (e.g., refs. 6{8). The approach
described in this paper applies the Liegeois method
in real time by using symbolical pseudoinverses for
both full and partitioned Jacobian matrices.

Other authors have investigated the use of par-
titioned or symbolic methods in redundancy resolu-

tion. Kir�canski and Petrovi�c (ref. 9) decompose a
manipulator into redundant and nonredundant sub-
assemblies; the redundant joints are solved by singu-
lar value decomposition or equivalent methods, and
the nonredundant joints are solved analytically. Holt
(ref. 10) presents numerical computation of the ap-
proximate pseudoinverse for a six-axis manipulator
near singularities by taking advantage of the wrist
partitioning of the Jacobian matrix. Chevallereau
and Khalil (ref. 11) present symbolic pseudoinverse
calculations for nonredundant manipulators at sin-
gularities and for a six-degree-of-freedom manipula-
tor on a linear track. In reference 12, Podhorodeski,
Goldenberg, and Fenton use screw theory in an or-
thogonal decomposition of a Jacobian matrix for a re-
dundant manipulator to determine analytical expres-
sions for the particular solution and the null-space
basis.

The references in the previous paragraph are lim-
ited in scope in that they deal either with non-
redundant manipulators at singularities or with re-
dundant manipulators having only one degree of
redundancy. In the partitioned solution of refer-
ence 9, only three joints are treated as redundant;
this treatment is limiting because the remaining four
joints do not participate in optimization. This paper
develops both full and wrist-partitioned solutions for



a manipulator with two redundant degrees of free-
dom. Here the partitioned solution is more useful
because each subassembly has a redundant degree of
freedom; thus, performance optimization is accom-
plished for each. To the author's knowledge, this
work has not been published before. The motiva-
tion for this work is real-time redundancy resolu-
tion of manipulators for remote space applications;
Earth-based applications can bene�t also. This work
was performed with graphical simulation and actual
hardware.

This paper describes real-time local performance
optimization e�orts for an eight-joint redundant ma-
nipulator having a three-axis spherical shoulder S,
a single elbow joint E, and a four-axis spherical
wrist W . (See �g. 1.) The Advanced Research Ma-
nipulator II (ARMII) is an eight-axis manipulator in
this class. NASA Langley Research Center has two
of these arms. This paper has four objectives : (1) To
apply the Liegeois method for local performance op-
timization (joint limit avoidance and manipulability
maximization) of the eight-axis manipulator in �g-
ure 1 and implement the method on actual hardware
in real time. (2) To investigate a kinematic limitation
of this class of manipulators and report its e�ect on
redundancy resolution. (3) To present closed-form
symbolic solutions for reduced computation. (4) To
develop a wrist-partitioned solution for reduced com-
putation and show that it is as valid, robust, and
e�ective as the full solution.

E

S

W

θ6

θ5

θ7 θ8

θ4

θ3

θ2

θ1

Figure 1. Class of eight-axis manipulators.

This paper is organized as follows. Local per-
formance optimization of redundant manipulators is

presented for general applications and for the con-
�guration of �gure 1. A partitioned solution is de-
veloped where optimization is accomplished for each
subassembly. Singularity analysis is presented for
both full and partitioned solutions. Results are pre-
sented to show the e�ectiveness of local performance
optimization. Results are also given to compare the
e�ectiveness of the partitioned and full solutions. A
kinematic limitation of this manipulator is investi-
gated, the limitation's e�ect on redundancy resolu-
tion is described, and proposed design alternatives
are presented to alleviate the problems. Finally, the
accomplishments of this paper are summarized.

2. Symbols

ai�1 Denavit-Hartenberg parameter

ci cos �i

di Denavit-Hartenberg parameter

d3; d5 Denavit-Hartenberg parameters, �xed
manipulator lengths

H objective function for optimization

rH gradient of H

rHi6=4 rH excluding the fourth term

HA objective function for arm
subassembly optimization

rHA;i6=4 gradient of HA excluding the fourth
term

HJ objective function for joint limit
avoidance

HM objective function for
manipulability maximization

HW objective function for wrist
subassembly optimization

rHW gradient of HW

Ip identity matrix of order p

J manipulator Jacobian matrix

J
� Moore-Penrose pseudoinverse of

Jacobian matrix

J4 column 4 of J with row 1 removed

J5�7 reduced Jacobian matrix with row 1
and column 4 removed, dimension
5� 7

J
�
5�7 Moore-Penrose pseudoinverse of

reduced Jacobian matrix, dimension
7� 5

JUL upper left partition of J, order 3� 4
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JLL lower left partition of J, order 3� 4

JLR lower right partition of J, order 3� 4

JUL4 column 4 of JUL with row 1 removed

J
�
1UL4 Moore-Penrose pseudoinverse of JUL

with row 1 and column 4 removed

J
�
LR Moore-Penrose pseudoinverse of JLR

k scalar gain for homogeneous solution

kA scalar gain for arm subassembly

homogeneous solution

kJ scalar gain for joint limit avoidance

homogeneous solution

kM scalar gain for manipulability

maximization homogeneous solution

kW scalar gain for wrist subassembly

homogeneous solution

m dimension of task space

n dimension of joint space

4

8
R rotation matrix representing orien-

tation of frame f8g in frame f4g

<i�j array of real numbers, dimension i� j

si sin �i

v translational terms of _X, f _x _y _z gT

vi v with �rst term removed

_X Cartesian translational and rota-

tional end-e�ector velocity

_X1
_X with �rst term removed

�i�1 Denavit-Hartenberg parameter

�ci center of travel for joint i

�i Denavit-Hartenberg parameter,

joint angle i

��i half range of travel for joint i

� vector of eight joint angles

_� joint rate vector

_�A arm subassembly joint rates,
�
_�1 _�2 _�3 _�4

	T

_�AH;i6=4 homogeneous solution for arm sub-

assembly joint rates excluding joint 4

_�AP;i6=4 particular solution for arm sub-

assembly joint rates excluding joint 4

_�AT total solution for arm subassembly

joint rates

_�AT;i6=4 total solution for arm subassembly

joint rates excluding joint 4

_�H;i6=4 homogeneous solution for joint rates

excluding joint 4

_�i ith joint rate

_�P;i 6=4 particular solution for joint rates

excluding joint 4

_�T;i6=4 total solution for joint rates excluding

joint 4

_�W wrist subassembly joint rates,
�
_�5 _�6 _�7 _�8

	T

_�WH homogeneous solution for wrist

subassembly joint rates

_�WP particular solution for wrist

subassembly joint rates

_�WT total solution for wrist subassembly

joint rates

! rotational terms of _X,

f!x !y !z g
T

Mathematical notation:

f g Cartesian coordinate frame

f:; :; : : : ; :gT vector components

j j determinant of a matrix

Arm reference points:

E elbow

EE end e�ector

S shoulder

W wrist

Coordinate frames:

4 elbow

8 wrist

Abbreviations:

ARMII Advanced Research Manipulator II

JLA joint limit avoidance

MM manipulability maximization
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3. Local Performance Optimization

Using Redundancy

3.1. General Redundant Solution

The resolved motion rate algorithm (ref. 1) is

a common method for Cartesian control of redun-

dant manipulators. Joint rates _� are mapped to

end-e�ector Cartesian velocities _X by the Jacobian

matrix J as follows:

_X = J _� (1)

In equation (1), _X 2 <m�1, J 2 <m�n, and
_� 2 <n�1, where m is the dimension of the task space

(m = 6 for spatial Cartesian control) and n is the di-

mension of the joint space (n = 8 in this paper). To

command a trajectory _X to a manipulator, _� must

be solved.

A kinematically redundant manipulator has more

degrees of freedom than required to perform the

task; that is, m < n. In this case, equation (1) is

underconstrained, and an in�nite number of solutions

for _� generally exist. A resolved motion rate solution

(ref. 2) is expressed as follows:

_� = J� _X + k(In� J�J)rH (2)

The �rst term of equation (2) is the particular solu-

tion. The matrix J� is the Moore-Penrose pseudo-

inverse (ref. 3) of the Jacobian matrix, which pro-

vides the least-squares solution of equation (1) to

achieve the Cartesian velocity command (called the

primary task). The second term, the homogeneous

solution, causes zero motion of the end e�ector. The

linear operator (In� J�J) projects an arbitrary vec-

tor into the null space of the Jacobian matrix. This

null-space projection matrix provides the self-motion

of the redundant manipulator. To optimize perfor-

mance criteria, the gradient of an objective function

of joint angles rH is used (ref. 2). The gain k is

positive to maximize H and negative to minimize H .

Figure 2 shows a geometric interpretation of the

Jacobian matrix null space for the manipulator in

�gure 1. The self-motion of this manipulator is the

orbit of the elbow joint about the line SW. That

is, by a recon�guration of joints, the position and

orientation of the end e�ector can be held �xed while

the elbow joint assumes any position along the circle

of �gure 2.

3.2. Eight-Axis Redundant Solution

This section presents the adaptation of the gen-

eral solution in equation (2) to the eight-axis manip-

ulator shown in �gure 1. To the author's knowledge,

E

W

S

Figure 2. Geometric interpretation of eight-axis arm self-

motion.

the solutions in this section have not been published

before. This manipulator can be viewed as two sub-

assemblies: an arm portion (�1, �2, �3, �4) respon-

sible primarily for positioning and a spherical wrist

(�5, �6, �7, �8) centered at W responsible primarily

for orienting the end e�ector. The arm subassembly

consists of a three-axis spherical shoulder centered

at S, and a single elbow joint at E. The four-axis

wrist mechanism is a roll-yaw-pitch-roll mechanism.

The ARMII is an eight-axis manipulator of the

class shown in �gure 1. The theory of this paper

has been implemented in real-time (33 Hz update)

on the ARMII. Appendix A presents the following

information for the ARMII: a photograph, the de-

sign attributes, the kinematic diagram, the Denavit-

Hartenberg parameters, the joint limits, the Jacobian

matrix referred to frame f4g (which is symbolically

the least complex among all possibilities), and a ve-

locity coordinate transformation for use with this

Jacobian matrix. In addition, reference 13 presents

ARMII forward and inverse position and velocity

kinematics equations, where the inverse solutions are

limited to six degrees of freedom.

3.2.1. Independent solution for elbow joint

rate. For manipulators with a spherical wrist, a

spherical shoulder, and a single elbow joint, the

length of reach from S to W is a function of only

the elbow joint angle. The SEW manipulator sub-

assembly is shown in �gure 3. To simplify the re-

solved rate solution, the elbow joint rate is calculated

independently of the remaining unknown joint rates.

For the eight-axis arm, this solution (ref. 13) is given

as follows:

_�4 =
�1

d5

�
_x+

d3c4 + d5

d3s4
_y

�
(3)
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In equation (3), d
3
and d

5
are kinematic parame-

ters (�g. 3), _x and _y are wrist Cartesian velocity
commands expressed in frame f4g, and s

4
and c

4

are the sine and cosine of the elbow joint angle �
4
.

Equation (3) is the general form of the particu-
lar solution for the elbow rate because the required
wrist velocities can be calculated from commanded
velocities in frames di�erent from the wrist (but
rigidly attached to frame f8g) via rigid-body velocity
transformations. (See ref. 14.)

S

W y

x

d5

θ4

E

θ4

d3

.

.

.

Figure 3. Elbow joint geometry.

3.2.2. Reduced Jacobian solution. Given the
solution in equation (3), the fourth column of the

Jacobian matrix multiplied by _�
4
is moved to the

left side of equation (1). The result is a 6� 7
Jacobian matrix that has a maximum rank of 5
because the elbow relationship uses one degree of
freedom. Therefore, either row 1 or 2 must be
removed from both sides of equation (1); row 1 is
removed because it has more symbolic terms. (See
appendix A.) With this reduced Jacobian matrix, the
particular solution for the remaining joint rates is

_�P;i6=4 = J
�
5�7

�
_X
1
� J

4

_�
4

�
(4a)

The vector _X
1
is the Cartesian velocity command

and J
4
is the fourth column of the Jacobian matrix;

both have row 1 removed. The pseudoinverse of the
reduced Jacobian matrix (J�

5�7) was derived with a
computer symbolic manipulation program (ref. 15)

with J
� = J

T(JJT )�1. When JJ
T is singular, a

numerical singular value decomposition can be used
to calculate J

�
5�7; the exact Cartesian trajectory

cannot be achieved, but this alternate solution is the
best available given the singular condition.

No loss of generality occurs when equations (3)
and (4a) are used for the particular solution to equa-
tion (1). If the geometric relationship of equation (3)

is not exploited for the solution of _�
4
, the pseudo-

inverse of the 6� 8 Jacobian matrix and equation (3)
always yield the same value.

The homogeneous solution of equation (1) for
local redundancy optimization is

_�H;i6=4= k
�
I
7
� J

�
5�7J5�7

�
rHi6=4 (4b)

The null-space projection operator is a square ma-
trix of order 7 that was obtained from the reduced
Jacobian matrix. The homogeneous term for _�

4
is

zero because of the geometric elbow constraint. Any
addition to the particular solution (eq. (3)) would
cause a deviation from the commanded trajectory.
The fourth term of the constraint function gradient
is excluded, as explained in the next paragraph.

Again, no loss of generality is incurred when
equation (4b) is used as the homogeneous solution
to equation (1). In general, JJ� = Im, but J

�
J 6= In.

However, because of the geometric elbow constraint
of the eight-axis arm, the fourth row and column
of J�J are the same as the fourth row and column of
the identity matrix, when J is the full 6� 8 Jacobian
matrix. The null-space projection matrix thus has
zeros for the fourth row and column. This condition
has two consequences. (1) Because the fourth row

is zero, a homogeneous term for _�
4
does not exist.

(2) Because the fourth column is zero, the partial
derivative of a constraint function with respect to �

4

never adds to the homogeneous terms for the other
joint rates.

The total solution to equation (1) is as follows.
The particular solution for the elbow joint rate is
given in equation (3), and the total solution for the
remaining joints is the sum of the particular and
homogeneous solutions:

_�T;i6=4= _�P;i 6=4+ _�H;i6=4 (4c)

3.2.3. Partitioned reduced Jacobian solu-

tion. To greatly reduce the computation require-
ment, a partitioned approach for the particular solu-
tion of equation (1) was implemented. The particular
solution for the full Jacobian matrix requires 25 times
more computation time than the partitioned particu-
lar solution (ref. 15). This section discusses the par-
titioned solution and extends the theory to include
the partitioned homogeneous solution.

Wrist partitioning is a common method for solv-
ing the inverse position and velocity problems of

5



nonredundant industrial manipulators with spherical
wrists. For nonredundant manipulators, the full and
partitioned solutions yield the same results. How-
ever, for redundant manipulators, the partitioned so-
lution yields a suboptimal result because the con-
straints are optimized separately for translation and
orientation. For instance, the full particular solu-
tion for joint rates is the least-squares solution. The
magnitude of the partitioned solution joint rates is
higher, but the di�erence is not signi�cant. (See
section 4.2.1.)

For a manipulator with a spherical wrist, equa-
tion (1) can be written in the following partitioned
form: (

v

!

)
=

"
JUL 0

JLL JLR

#(
_�A

_�W

)
(5)

The vectors v and ! are the translational and rota-
tional Cartesian velocity commands. The Jacobian
matrix is partitioned into upper-left, lower-left, and
lower-right 3� 4 submatrices. The vector _�A repre-
sents the translational (arm) joint rates 1 through 4,

and _�W the rotational (wrist) joint rates 5 through 8.
The upper-right submatrix in equation (5) is the
3� 4 zero matrix because of the spherical wrist: The
wrist joint rates do not a�ect the translational veloc-
ities of the wrist center. In the translational equa-
tions, _�4 is �rst determined from equation (3). The
particular solution for the remaining arm joint rates
is as follows:

_�AP;i6=4 = J
�
1UL4

�
v1 � JUL4

_�4

�
(6a)

The joint rate vector _�AP;i 6=4 contains the transla-

tional joint rates excluding _�4, J
�
1UL4 is the 3� 2

pseudoinverse of JUL with column 4 and row 1 re-
moved, v1 is v with row 1 removed, and JUL4 is
column 4 of JUL with row 1 removed.

The homogeneous solution for the arm joint rates
excluding _�4 is given in the following equation,
where HA is a function of the arm joint angles:

_�AH;i 6=4= kA
�
I3 � J

�
1UL4J1UL4

�
rHA;i 6=4 (6b)

The total arm joint rate solution is as follows. The
particular solution for the elbow joint rate is given in
equation (3). Again, the homogeneous solution for _�4
is zero. The total solution for the remaining arm
joints is the sum of the particular and homogeneous
solutions:

_�AT;i6=4=
_�AP;i 6=4+

_�AH;i6=4 (6c)

For the same reasons stated for the non-
partitioned solution, no loss of generality is incurred
by using equation (3) and reducing JUL to J1UL4

for both particular and homogeneous translational
solutions.

The particular and homogeneous wrist joint rate
solutions are given in equations (7a) and (7b). The
total wrist joint rate solution is the sum of the
particular and homogeneous solutions:

_�WP = J
�
LR

�
! � JLL

_�AT

�
(7a)

_�WH = kW
�
I4� J

�
LRJLR

�
rHW (7b)

_�WT = _�WP + _�WH (7c)

The full JLR is used for the rotational equations so
the order of the pseudoinverse J

�
LR is 4� 3. The

e�ect of the total arm joint solution must be sub-
tracted for the wrist particular solution. The ob-
jective function HW is a function of the wrist joint
angles.

Symbolic expressions for J�
1UL4 and J

�
LR are given

in appendix B. Also, the symbolic forms of the
partitioned null-space projection matrices are given
in appendix C.

3.2.4. Eight-axis arm singularity analysis.

Singularity conditions for redundant manipulators
arise when jJJT j = 0. This matrix is symmetric

and positive semide�nite (jJJT j � 0). For the par-
titioned solution, singularity analysis is presented as
follows. The calculation of _�4 in equation (3) fails
when d3 = 0 or d5 = 0 (neither is possible) or when
�4 = 0�; 180�. The joint angles follow Craig's con-
vention (ref. 14), and the zero position for all joint
angles is given in �gure A2 of appendix A. The singu-
larity condition for the remaining translational joints
is independent of �1. (In appendix B, DUL is given.)

���J1UL4JT1UL4��� = d2
3
s2
4
DUL = 0 (8)

Of the three terms in equation (8), only the last two
can become zero. When �4 = 0�; 180�, the transla-
tional joints are in the elbow work space limit singu-
larity. At �4 = 0�, the elbow is fully extended and
the freedom to translate along EW has been instan-
taneously lost. Similarly at �4 = 180�, the elbow is
folded upon itself. The term DUL can become zero
in two ways.

1. �2 = 0�; 180� and �3 = �90�. (See �g. 4(a).)
In this case, joint 4 can instantaneously move
W tangentially to the link EW, and joint 1, 2,

6
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Singular direction 

Side view Front view 

(a) Internal singularity for arm subassembly.

W

E

S2

3

4

1
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Side view Front view 

(b) Doubly degenerate singularity for arm subassembly.

W
E

Yaw

7

6

5

8

Singular direction 
(no pitch)

YEE

EE

EE

Roll

ZEE

(c) Internal singularity for wrist subassembly.

Figure 4. Singularity con�gurations.

or 3 can move W perpendicular to the plane of
the side view. However, the freedom to trans-
late radially along link EW is gone (singular
direction).

2. �2 = �4 = 0�; 180�. This case is doubly de-
generate with respect to translation. (See
�g. 4(b).) The zeros of DUL were obtained
numerically because of its complexity.

The singularity condition for the wrist joints is
independent of �5 and �8 and is given as follows:

���JLRJTLR
��� = 2

�
1� s26s

2

7

�
= 0 (9)

The wrist singularity occurs only when �6 = �90
�

and �7 = �90
� simultaneously. As shown in �g-

ure 4(c), joints 5 and 7 provide yaw, joints 6 and 8
provide roll, but the freedom to pitch has been lost.

7



The symbol EE in �gure 4(c) represents the end
e�ector.

Table 1 summarizes the four singularity condi-
tions for the general eight-axis arm. For the ARMII,
as shown in table A2, the cases where �2 or �4
equal 180� and �7 = +90� are out of joint motion
ranges, and the case �6 = �90� coincides with the
joint limits.

Table 1. Singularity Conditions

Number Condition

1 �4 = 0�; 180�

2 �2 = 0�; 180�; �3 = �90
�

3 �2 = �4 = 0�; 180�

4 �6 = �90
�; �7 = �90

�

Entries 1 and 3 (3 is a subset of 1) are work space
limit singularities, and entries 2 and 4 are work space
interior singularities. These singularity conditions
were derived from the partitioned solution. The sym-
bolic analysis for jJ5�7J

T
5�7

j is too complicated for
analytical treatment. With the exception of the el-
bow joint work space limit singularity, �4 = 0� ; 180�.
However, an intensive numerical computer search in-
dicated that the full Jacobian matrix shares all four
singularity conditions from table 1. The computer
search also indicated that no additional singularities
exist for the full solution. This result is expected
because of the spherical wrist. Reference 16 shows
that for a nonredundant manipulator with a spherical
wrist, the partitioned arm and wrist singularities cor-
respond one-to-one with the singularities of the full
Jacobian matrix. This condition is not true for ma-
nipulators with a nonspherical wrist. The computer
search involved all possible combinations of joint an-
gles in steps of 5� over a full 360� rotation. At each
step, jJ5�7J

T
5�7

j was computed and the cases near
zero were printed.

In the neighborhood of manipulator singularities,
both full and partitioned symbolic solutions be-
come ill-conditioned. A numerical singular value de-
composition solution can be used, where the trajec-
tory cannot be satis�ed, but the alternate solution is
the best available given the singular condition.

3.3. Objective Functions

This section presents three objective functions for
use in the homogeneous solutions to optimize the
performance of a redundant manipulator. Two ob-
jective functions have been implemented for the full

and partitioned solutions: joint limit avoidance and
manipulability maximization (singularity avoidance).
A third objective function for obstacle avoidance is
discussed but has not been used.

The following function was proposed by Liegeois
(ref. 2) to allow the manipulator to avoid joint limits:

HJ(�) =

nX
i=1

�
�i � �ci

��i

�
2

(10)

where �i is the current value for joint i, �ci is the
center of travel for joint i, and ��i is half the range
of travel for joint i. The function is normalized by
its denominator so that each joint has equal weight
regardless of its range of travel. This function is
minimized for joint limit avoidance. Equation (10)
is de�ned for the full solution. For the partitioned
solution, HA is de�ned for i = 1 to 4, and HW for
i = 5 to 8. Klein and Huang (ref. 5) state that equa-
tion (10) leads to a suboptimal joint limit avoidance
solution. The optimal norm to use is the maximum
norm; they use the p-norm to approach the maxi-
mum norm with a tractable gradient. Equation (10)
is used in this paper.

From reference 17 Yoshikawa's de�nition of
manipulability is as follows:

HM(�) =

r���JJT ��� (11)

This function is maximized to ensure that the
manipulator operates far from singular con�gura-
tions. The value of equation (11) is zero when
the manipulator is in a singular con�guration. For
the full homogeneous solution, the function is

HM =
q
jJ5�7J

T
5�7

and for the partitioned solution

the functions are HA =
q
jJ1UL4J

T

1UL4
j and HW =q

jJLRJ
T
LR
j. The gradients of the two implemented

objective functions have been derived symbolically.

Yoshikawa (ref. 17) proposes minimization of the
following function for obstacle avoidance:

Ho(�) =
1

2
(� � �r)

TW(� � �r) (12)

where �r is a single constant manipulator con�gu-
ration that is good for avoiding collisions with an
obstacle, and W is a diagonal matrix with posi-
tive gains. Except for normalization, equation (12)
is similar to equation (10). Equation (12) has not
been implemented for the eight-axis arm because pre-
determined information is required on the obstacles
in the work space. In unstructured environments

8



such as space, this method is too limiting because
it is not adaptive to unknown obstacles. Other
authors have proposed more robust and adaptive
methods for obstacle avoidance with redundant ma-
nipulators. For instance, Karlen et al. (ref. 18) dis-
cuss an algorithm for re
exive obstacle avoidance
using proximity sensors along the redundant manip-
ulator. In reference 4, Nenchev presents 21 references
dealing in part with obstacle avoidance.

4. Results

The data reported in this section were obtained
via graphical simulation. The ARMII manipulator
was used for the examples in this section to verify
the simulated results on actual hardware.

4.1. Local Optimization Results

This section presents local redundancy optimiza-
tion results for the full solution. Results are given for
joint limit avoidance, manipulability maximization,
and a combination of the two. The units are me-
ters per second and radians per second for Cartesian
translational and rotational velocities, respectively,
and degrees for joint angle. The joint limit con-
straint function HJ is dimensionless, and the units
for manipulability HM are square meters.

Figure 5. Initial con�guration for joint limit avoidance.

4.1.1. Joint limit avoidance. The constraint
function used is equation (10) with n = 8. The tra-
jectory is an end-e�ector roll, _X = f0; 0;0;0;0; 0:4gT.
As shown in �gure 5, � = f0;�30;0;�70;0;0;�50;0gT is
the starting con�guration. Table A2 gives the joint
limits for the ARMII. Joint 8 was designed to provide
continuous bidirectional roll, but the limits were set
to �300�. The trajectory for this example is satis�ed
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Figure 6. Joint limit avoidance.

by a combination of all joints. Figure 6(a) shows the
constraint function value for the particular solution
only (k = 0 in eq. (4b)) and the particular solution
with joint limit avoidance (minimization, k = �0:5).
With no optimization (k = 0), the objective function
is greater, which means the joints are generally far-
ther from their center of travel and thus nearer to
limits. Optimization (k = �0:5) improves this situ-
ation and forces the joints to be farther from their
limits.

A compelling demonstration of the bene�t of joint
limit avoidance optimization shows when a joint limit
is encountered. For the same trajectory, �gure 6(b)
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shows �5 hitting a limit at 9.5 sec, but avoiding the
limit when the function is minimized. The associated
Cartesian error due to the joint limit is shown in
�gure 6(c). With joint limit avoidance, the resulting
Cartesian trajectory is useful for a larger time span.

4.1.2. Manipulability maximization (sin-

gularity avoidance). The constraint function HM

is de�ned following equation (11). The commanded
Cartesian trajectory is _X=f0:01; 0:01;0:01;0;0; 0gT,
and the initial manipulator con�guration � =

f0;�10;75;�70;0;�80;�90;0gT (�g. 7) is near both arm
and wrist singularities. Figure 8 shows HM for the
particular solution only (k = 0) and with manipula-
bility maximization (k = 1). Both curves start with
manipulability near zero because the initial con�g-
uration is nearly singular. As the curve for k = 0
shows, the chosen trajectory tends to increase the
manipulability gradually even when no maximiza-
tion is applied. However, the optimized solution in-
creases the manipulability rapidly and then main-
tains it at a high level during the move. Both curves
fall o� rapidly as the trajectory drives the manip-
ulator into the work space limit singularity where
�4 = 0�. Optimization does nothing to improve this
situation because no homogeneous term exists for _�4,
as explained in section 3.2.2.

Figure 7. Manipulability maximization for initial

con�guration.
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Figure 9. Manipulabilitymaximization for HM.

Figure 9 dramatically demonstrates the bene-
�ts of manipulability maximization. For this �g-
ure, the initial manipulator con�guration is the same
as the one in �gure 7, but the Cartesian trajec-
tory is _X = f0;�0:01;0;0; 0;0gT. Without optimization
(k = 0), the trajectory drives the manipulator into
the neighborhood of the �6 = �90

�, �7 = �90
� in-

ternal wrist singularity, and the manipulability mea-
sure remains near zero for the entire time. With ma-
nipulability maximization (k = 1), the manipulator
avoids the singularity and achieves the commanded
trajectory with high manipulability.

4.1.3. Combined optimization. Experiments
with manipulability maximization with the full solu-
tion revealed that regions exist where the local maxi-
mum for HM lies outside the joint limits of table A2.
The algorithm attempts to increase HM , but it is
not physically realizable because of the physical joint
limits. Such cases indicate that combining optimiza-
tion criteria is sometimes necessary. For the example
in this section, the Cartesian command and initial
con�guration are the same as those for the manipu-
lability example in �gure 9. The objective function is
constructed to maximize manipulability while avoid-
ing joint limits:

H(�) = kMHM + kJHJ (13)
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where the manipulability and joint limit functions
are de�ned in equations (11) and (10); kM must be
positive to maximize HM , and kJ must be negative
to avoid joint limits.

An example of a case where manipulability maxi-
mization and joint limit avoidance must be combined
is given in this section. The Cartesian trajectory
is _X = f0:01;0:01;0:01;0; 0;0gT. The initial manipula-
tor con�guration is � = f0;�10;85;�70;0;�80;�90;0gT;
this con�guration is the same as the one in �gure 7,
with one change: �3 starts at 85

�, which is 10� closer
to the internal arm singularity. In this example, joint
limits are reached for �7 and �3 during the trajectory
with manipulability maximization only.

Figure 10(a) compares HM for manipulability
maximization only (kM = 1; kJ = 0) and for ma-
nipulability maximization with joint limit avoid-
ance (JLA) (kM = 1; kJ = �1). A third plot shows
the manipulability for the trajectory without any
optimization, k = 0 (actually, kM = 0; kJ = 0) for
comparison. Without any optimization (k = 0), the
manipulability remains low for the entire trajectory.
With manipulability maximization and without joint
limit avoidance (MM in �g. 10(a)), the manipulabil-
ity is highest, but this condition is not physically
realizable because of the joint limits encountered. A
joint limit for �7 is reached at 9 sec, which causes
the Cartesian error to increase rapidly (�g. 10(b)) as
the actual trajectory deviates from the commanded.
Because of this error, �gure 10(a) shows that with-
out joint limit avoidance, the manipulator reaches
the �4 = 0� work space limit singularity (where HM
goes to zero) sooner than it does with joint limit
avoidance. With both manipulability maximization
and joint limit avoidance (MM + JLA in �g. 10(a)),
the manipulability assumes intermediate values that
are realizable because no joint limits are encoun-
tered. Joint limits were not encountered for the no
optimization (k = 0) case, and the plot is so simi-
lar to MM+ JLA in �gure 10(b) that it is not in-
cluded. The instability re
ected around 28 sec in
�gures 10(a) and 10(b) for the MM case is due to the
work space limitation singularity; these data were ob-
tained through the use of simulation not the actual
ARMII hardware.

4.2. Comparison of Partitioned and Full

Solutions

The results presented previously are for the full
solution. The partitioned solution is suboptimal
because the particular and homogeneous solutions
are optimized separately for the translational and
rotational parts. However, as shown in the results
of this section, the di�erence is not signi�cant.
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Figure 10. Combined optimization.
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Figure 11. Full vs partitioned joint rate magnitude.

4.2.1. Comparison of particular solutions.

The full particular solution (eq. 4(a)) yields the
least-squares solution for joint rates. The parti-
tioned particular solutions (eqs. 6(a) and 7(a)) re-
sult in a higher Euclidean norm joint rate magnitude.
Figure 11 shows a typical result. This simulation
moves the manipulator toward the singularity where
�4 = 0�. The maximum percent di�erence between
the full and partitioned joint rate magnitudes is 2.5,
which decreases as the manipulator approaches the
singularity.
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4.2.2. Joint limit avoidance. The Cartesian
trajectory and initial manipulator con�guration
in this example are _X= f0; 0;0;0; 0;0:4gT and
� = f0;�30;0;�70;0;0;�50;0gT, the same as the exam-
ple of section 4.1.1. Figure 12 shows joint limit
avoidance for the full (k = �0:5, repeated from
�g. 6(a)) and the partitioned (kA = kW = �0:5) so-
lutions. The results are nearly identical. The full
objective function is only slightly less than the par-
titioned objective function. Theoretically, the full
solution avoids joint limits better than the parti-
tioned because the objective function is minimized to
smaller values, but practically there is no di�erence.
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Figure 12. Full vs partitioned joint limit avoidance.

4.2.3. Manipulability maximization. The
Cartesian trajectory and initial manipulator con�gu-
ration in this section are _X = f0:01;0:01;0:01;0; 0;0gT

and � = f0;�10;75;�70;0;�80;�90;0gT, the same as
the �rst example of section 4.1.2. Figure 13 com-
pares manipulabilities for the full (k = 1, repeated
from �g. 8 with a di�erent vertical scale) and the
partitioned (kA = kW = 1) solutions. The constraint
functions for the partitioned case are the arm and
wrist manipulabilities, HA and HW , de�ned follow-
ing equation (11). The units for HA are m2 and HW
is dimensionless.
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Figure 13. Full vs partitioned manipulability maximization.

Figure 13 shows that the wrist manipulabil-
ity for the partitioned case increases rapidly top
2 and is held there for the remaining trajectory.

The partitioned arm manipulability increases to a
lower value and falls o� as the elbow work space
limit singularity is approached. The full manipula-
bility increases to a value in between the arm and
wrist curves. It also falls o� as the elbow work space
limit singularity is approached. Therefore, the wrist
manipulability appears to be superior to the full so-
lution, and the arm manipulability tends to be lower
than the full solution.

4.2.4. Accuracy of partitioned solution. In
the eight-axis singularity analysis of section 3.2.4,
the singularities of the partitioned solution were con-
cluded to be identical to those of the full solu-
tion; these are the physical manipulator singulari-
ties. Therefore, the partitioned solution does not
add algorithmic singularities to those found in the
full case.

When a determinant is zero, the solution is sin-
gular; when it is near zero, the solution is ill-
conditioned. The following question arises: Is
the partitioned solution ill-conditioned in a larger
neighborhood around the singularities than the full
solution? To answer this question, joint trajectories
were designed to drive the graphical simulation of the
manipulator through two work space interior singu-
larities (�2 = 0�, �3 = 90� and �6 = 90�, �7 = �90�)

simultaneously, and the full and partitioned jJJT j
were studied. Figure 14 shows the manipulator in
these singular conditions, where the full con�gura-
tion is � = f0;0;90;�70;0;90;�90;0gT. This con�gura-
tion is a combination of those shown in �gures 4(a)
and 4(c).

Figure 15 presents the results of this study. Start-
ing from � = f0;�10;80;�70;0;80;�100;0gT, joints 2,
3, 6, and 7 were updated by 1�/sec, so both sin-
gularities were reached at 10 sec. Figure 15 is a
plot of jJ5�7JT5�7j (5� 7), jJ1UL4JT1UL4j (arm) and

jJLRJTLRj (wrist). The arm curve is symmetric; the
5� 7 and wrist curves are not because joint 6 hits
a limit at the wrist singularity and does not move
through.

Figure 15 provides a clear answer to the question
of ill-conditioning: The full solution (5� 7) is ill-
conditioned in a much greater neighborhood around
the singularities than the partitioned solutions (arm
and wrist). Therefore, the robustness of the parti-
tioned solution is an advantage when compared with
the full solution.
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Figure 14. Internal arm and wrist singular con�gurations.
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Figure 15. Full vs partitioned solutions near singularities.

5. Eight-Axis Arm Design Limitation

This section discusses a limitation in the eight-
axis arm design regarding redundancy optimization.
Design alternatives are presented in appendix D to
alleviate the problem.

As discussed in section 3.2.1, the length of reach
from shoulder to wrist for manipulators with a spher-

ical wrist, spherical shoulder, and a single elbow joint
is a function of only the elbow joint angle. Figure 3
shows this relationship. Regardless of the �3; �5 val-
ues, the length SW (�xed by the Cartesian trajec-
tory) is a function of only �4. This function is ob-
tained from the cosine law discussed in reference 15.
A derivative of this relationship yields the unique
solution for _�4 in equation (3).

The limitation in this design is that the elbow
joint can only be used to satisfy the primary task, the
Cartesian trajectory. As discussed in section 3.2.2,
the elbow joint cannot be used in the secondary task
of manipulator performance optimization because it
does not in
uence the self-motion of the eight-axis
arm. As a trade-o�, a bene�t of this design is sim-
pli�ed kinematics, and greatly reduced computation
requirement when exploiting the independent elbow
rate solution and the wrist-partitioned solution.

Although the eight-axis arm has two redundant
degrees of freedom, it has only one mode of self-
motion, the elbow orbit about the line SW. (See
�g. 2.) This self-motion is also achieved by seven-
degree-of-freedom manipulators with only one redun-
dant freedom. The question becomes, Is the ex-
tra overhead and reduced reliability with the extra
joint justi�ed considering only one self-motion mode
is achieved and the elbow joint cannot be used for
optimization?

Appendix D discusses kinematic design modi�ca-
tions to address the existing eight-axis arm limita-
tions. The emphasis is to provide a second mode of
self-motion, in the plane SEW, and to ensure that
the elbow joint participates in optimization.

6. Conclusions

This paper presents local redundancy optimiza-
tion applied to a class of eight-axis redundant arms.
The theory has been implemented on a member
of the class, the Advanced Research Manipula-
tor II (ARMII). The performance constraints for the
secondary task optimization are joint limit avoid-
ance, manipulability maximization (hence singular-
ity avoidance), and a combination of the two. Re-
sults are presented to show the e�ectiveness of the
redundancy optimization.

The methods used in this paper are well-known
from the redundant manipulator literature. The
contributions of this paper are fourfold.

1. Real-time local redundancy optimization for
an experimental eight-axis manipulator is
demonstrated. Most experimental e�orts in
the past have used seven-axis arms.
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2. A kinematic design limitation of this class
of eight-axis arms is explained. The length

of reach from the shoulder to the wrist is a

function of only the elbow joint angle, which

means that the elbow angle participates only

in the primary task, and cannot a�ect the sec-
ondary optimization task. Even though there

are two redundant degrees of freedom, there

is only one mode of self-motion. The ge-

ometry is suited for low computation redun-

dancy resolution, but the trade-o� is reduced
versatility.

3. Symbolic pseudoinverses and objective func-

tion gradients are used for both full and par-
titioned solutions. In addition, for the parti-

tioned solution, the symbolic arm and wrist

null-space projection matrices are given.

4. This paper shows that a partitioned solution

can be applied to obtain similar optimization

results as the full solution, without the in-
troduction of algorithmic singularities. The

motivation for the partitioned solution is re-

duced computation. The partitioned solution

is suboptimal because translational and ro-

tational terms are optimized separately for
both primary and secondary tasks, but pre-

sented results show the di�erence is not sig-

ni�cant. Singularity analysis reveals that no

algorithmic singularities exist for the parti-

tioned solution. The partitioned and full so-
lutions share the same physical manipulator

singular conditions. Also, the partitioned so-

lution is shown to be ill-conditioned in smaller

neighborhoods of the shared singularities than

the full solution.
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